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ABSTRACT
Answering a question raised by Y. Berkovich, we give examples of finite p-
groups G with the property that the only finite p-group K with G char K,
is G itself. We also prove a theorem stating that every finite p-group is
contained in such a group G.

Let p be a prime. Y. Berkovich has recently raised the question whether there

is a finite p-group G which is not characteristic in any finite p-group properly
containing it. Since the world of finite p-groups is densely populated, theorems
governing all of its inhabitants are rare, and it seems likely that questions like
this are raised in the hopes of a negative answer. However, we are going to

prove

THEOREM: For every finite p-group G there is a finite p-group H such that
G < H and H is not characteristic in any finite p-group properly containing it.

This theorem suggests that the answer to the question what makes a finite

p-group G characteristic in another finite p-group, K, partially lies within G
itself. It has been known for a long period (see [2]) that a finite p-group G
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has outer automorphisms of p-power order; the theorem indicates the possibil-
ity that, given any finite p-group G, one cannot form arbitrarily long chains
G = Gy char G char ... char G, of extensions by outer p-automorphisms.

We are first going to present examples of finite p-groups that are not charac-
teristic in any finite p-group in which they are properly contained. These ex-
amples I believe to be as small as possible; this will be commented on after the
reader has seen the examples. The theorem as such will be proved inductively,
using a wreath product construction. The cases p = 2 and p odd must be
handled separately throughout.

NOTATION: The i-th term of the lower central series of the group P will be
denoted by ~;(P). For group elements x and y, we let [z, y] = [z, 13], [z, ny] =
[, n-1y], y], 2 < n € N. We will use “<-” to say “is a maximal subgroup of”.
We will otherwise be using the notation introduced in Chapter 5 of [3].

We will be using the following corollary to the Hall-Petrescu formula, to be
found e.g. in [1] (11.9): If =, y are elements of the group H, then

J
(%) (2y)” =2 y” mod G;(va(H)) []0j—e(rpe (H))
/=1

Remark 1: Some facts on automorphisms of semidirect products and wreath
products.

a) First of all, let H = QS and H= @g be products of the normal subgroups
Q, @ and the subgroups S and §, respectively. If o1 : Q — @ and oy : S — S
are isomorphisms satisfying the conditions

o1 |gns and o2 |gns both induce the same isomorphism @ N S — @ NS and

(1) (¢7)* = (¢°)"*, whenever s € S and g € Q

then there is an isomorphism o : H — H given by (¢s)? = ¢°*s°2. Indeed, the
first condition in (1) makes o well-defined, while the second yields (sq)? (tr)? =
572q71t72000 = (st)72(¢7) P ror = (st)72(¢'r)7r = (stqr)?, whenever ¢, 7 € Q
and s, t € S.

b) Let H = RS be the wreath product of the groups R and S with respect
to a faithful transitive permutation representation of S on some set 2, and let
Q = R be its base group. Let us identify S with its image in Sq. If 7 € N, (5)
and f € Q, define f7 via setting f™ (w) = f(w™ ), w € Q. Forte S, f € Q,
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w € Q, we obtain (f7) (w) = f7 (W) = flw ) = flwT ) = 17 (w).
According to a), this entails that H has an automorphism defined by (sf)” =
ST se S, feq.

c) Let H, @ be as in b) and suppose that @ char H. For w € Q let R, be
the set {f € R? : f(v) = 1 whenever w # v € Q}. If f € Q, then Cq(f)
is isomorphic to the direct product of the groups Cg,(f(w)), w € Q. Thus
if 7€ Aut(H), w € Q and f € R, then there is v € Q with f7 € R, Z(Q).
Letting f, g € R, \ Z(R.,) and applying this argument to f, g, fg, we see that
there is v € Q with 7, ¢" € R,Z(Q). In other words, () acts on the set
{R,Z(Q) : w € Q}.

d) Now let p be a prime, and R a finite p-group, let S = (a) = Z/p"Z and
let H be the regular wreath product of R and S. Let () be a complement
of Q@ in H, let @1 = Q, Qi+1 = ®(Q;), i € N, and suppose that there is
x € Q with (3)* = (ay), y € Q;. From o(ay) = p" and (x), we derive
[y, pn—10] € Qiy1. Regarded as an (a)-module, V := Q;/Q;41 is a direct sum
of isomorphic copies of GF(p)[(«)]. This entails that yQ,11 € [V, a]; letting
YQit1 = [a, v], v = uQ; 41, we obtain that peu e (a)Q;+1. Via induction on
i, we find that () and (3) are actually Q-conjugates, in particular Aut(H) =
Inn(H) Naus(n ().

LEMMA 2: Let p be an odd prime and let G be the semidirect product of
(o) with (1), where o(a) = p3, o(t) = p?, a* = aPTL. The group G is not
characteristic in any finite p-group properly containing it.

Proof. Observe that 72(G) = (a?), v3(G) = (a?’) = Z(Q), ®(G) = (aP)(iP).
Using (x), we obtain that

(2) Forr, s, teZ,(a"’®)P =a™*P(mod (ap2>),

while [P, 1] = of = (au'P)P.

Using (2), we find that Q2(G) = (¢, oP), while the elements g of G enjoying
the property that o(g) = p® and there is x in G satisfying g® = g’ are precisely
the elements a”¢t*” with r not divisible by p.

Let H € Syl,(Aut(G)); both (1)@(G) and («)®(G) having just been seen to
be characteristic in G, we have [G, H|] < ®(G). Let ¥ € H \ Ny ({a)); upon
maybe replacing ¢ be some p’-power, there is k& € N such that o = o*P+1,P,
whence o? v

= atP for some power ¢ of + and we may assume a¥ = aP. By
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(2), this entails [, ¥J] = 1, whence [P, 1”] = aP. Thus (¥ = ta?’ for some /.
Replacing ¢ by the automorphism g — go‘iﬁ for a suitable i gets us to ¥ = ¢,
oV = auP. Note that [o, 9P] = [, ¥]P = 1, whence 9P = id.

If 3 € Ng({a)), then [a, Bt*] = 1 for some k, as, indeed, (1) induces the
Sylow-p-subgroup of Aut({a)) on (o). We may thus presume 8 € Cg(«). Then
(B, 1] € Ca, e (a) = (a?), which shows § € Inn(G).

As H = (¢, Ny({«))), H = (¢, Inn(G)). The group G must have non-inner
p-automorphisms ([2]), so ¥ exists; we might also apply Remark 1a).

Let G < K be a finite p-group. We would like to produce an automorphism o
of K that does not normalise G.

Let C = Ck(G). The description of Aut(G) just procured yields that K =
GC(t), where either t = 1 or ¢ induces ¥ on G. Hence t* € C, [t, (v, P(G))] =1,
CH)NG < (a?’). If C ¢ G, then there is 2 € C such that (zP, [z, K]) < Z(G) =
<ap2>. Let a® = ax. There is £ € {0,...,p — 1} satisfying aP = a?’. Then
(ax)P = aPzP = [ax, 1P]. This amounts to saying that the maps oy : a — a,
o9 ¢ 1 +— u'P satisfy (1), thus Remark 1a) says that the map a’t/ +— a?1/792 is
an isomorphism.

Let U = (C,t,?) = (C,t) x ({P). If u € U, there is £, € {0,...,p—1} satisfy-
ing [y, u] = aP’tu Tt is well-known (and easily checked) that, if H is any finite
p-group, if z € Q1(Z(H)) and Hy <- H = (Hq, y), there is an automorphism of
H centralising H; and mapping y to yz. Note that (¢?, ap2> =UNG < Cy(x)
and |U : Cy(x)| < p. Hence there is oo € Aut(U) defined by u®? = us =P,
u € U. Furthermore, [ay, u?] = [, ula ™ %[y, u] = |, u], while [/, u7?] =
[t,u] = 1. Since [G, (9)] = (i, a?") = UNG < Ca(o1) N Cy(oz), these
considerations imply that

[u, g] = [u”?, g°*] = [u, g]7* € Z(U).

whenever u € U and g € G, @ = 1, 2. The maps o; and o9 satisfy the require-
ments of (1), thus Remark 1a) says that o, defined by (ug)? = ¢g%*u?2, u € U,
g € G, is in Aut(K).

It remains to investigate the possibility that K = (G, t), conjugation by ¢
inducing ¥ on G. Let tP = ozp%, 0e€{0,...,p—1}. If p > 3, then, as [, t, t] = 1
and ([t, a, o]) = (") while [, t] = 1 anyway, we have w({G, 1)) = 1, in
particular (af)? = aPt? = aPa? ! by (x). Thus [at, u?] = [a, Ja? ! = (at)P.

Applying Remark 1a) yields an isomorphism ¢ mapping « to at, ¢ to t.*?. Since
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[LtP 1] =1 = [, t] and (at)t = att? = at(1’P)P, we may set 7 = t and refer to
Remark la) to extend o into an automorphism of K.

If p = 3, then (at)® = 33173, a] = 3% - o, whence [at, 13+ =
[, 1]a®*D = (at)3. Define o via a — at, 1 +— 3D tst. 1

Remark 3: If p is odd and F is a p-group of order less than p®, then F is
characteristic in some finite p-group properly containing F'.

A short justification: Let F be a finite p-group of order at most p?; if p > 3
or if ¢l(F) < 2, then F is regular. Assume that |U1(F)| < p. Then Q;(F)
has index at most p in F' and (zy)? = aP whenever y € Q;(F) and z € F.
Letting 1 # z € Q1 (Z(F)), K = F{c), [F, ¢] =1, ¢? = z, we see that F char K.
If p= 3 and F is of maximal class, then A = Cp(F’) is abelian of order 33.
Let F = A(z), and let K = F(t) with (3, [t, (z)F']) = 1 and [A, t] = Z(F);
in K, A is no longer characteristic, so neither is F'. Certainly, F' cannot be
abelian, so |U1(F)| = p?, and F is metacyclic. Let F = (z)(y) with (z) < F,
and either o(z) = p? and z¥ = 2P or o(z) = p® and z¥ = 27" 1. In the
second case, F char Gy with G1 2 G, (F 2 {(a, () being characteristic in G
by (2)). In the first case, there is 7 € Aut(F) with 2”7 = ay, y™ = y. If
|F| = p*, then let H be the semidirect product F(r). Then U1(H) = Uy(F),
and F = Cy(U1(H))char H. 1If |F| = p® and p > 3, then let H = F(t) with
t? = 2P and t inducing 7 on F. For 0 < 4,5 < p—1,0 < k < p? -1,
(xFyiti)P = xPtIP = P using (%), and no automorphism of H could map z to
xFyitI. If |F| = 32, then let H = F(7) be the semidirect product. Suppose that
20 =, u=a'zv=1,14 7€ {1, -1}, 2 € {y, 23); from 23 = 23[v, 2¢, 27,
we derive i = —1 = j. If 3 does not divide 4, then Cy(z'tz), z € (y, 2®), is
equal to (z'tz, 23), so t7 € t{y, #3). Thus (at)° € 2=y, ), so o((xt)?) =
9 # 3 = o(xt). Accordingly, (x) = F char H.

LEMMA 4: Let p = 2, let A = (a, b, ¢) be homocyclic of exponent 4 and rank
3, let G = (A, «a, t) where

Then if K is a finite 2 group with G < K, G is not characteristic in K.
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Proof. Let {ai, b1, c1} be any set of generators of A; then there is ¢ € Aut(A)
with d¥ = di, d € {a, b, ¢} — A being the free abelian group of rank 3 and
exponent 4, after all. Right now this remark is directed at «, yet we will bear
it in mind.

Note that Ca(a) = Z(G) = (c?), while ®(G) = (a?,b,c,®(A)) and G’ =
[A, G] = (b,c,®(A)). Furthermore, [a, a*] = b?c? and [b, a*] = %, while
Ca(a?) = (¢, ®(A)) and [b, a?] = a®c®. Thus o(a) = 8, Cg(b) = A, and A =
Cq(G') char G. This implies that (4, ¢, a*) = Cq(A/®(A)) is likewise charac-
teristic, whence Aut(G) normalises the chain ®(G) <- A®(G) <- AP(G){t) and
thus is a 2-group.

Let d = a'b/c* with i, j, k € Z be any element of A. Then [d, a] = bic/a?*,
[d, o, a] = c'a®b?* | and [d, o, a, a] = a®'b? c?* = d%. Thus if o’ is an Aut(A)-
conjugate of a, then [a, o/, o/, /] = a®. If o/ is contained in the unique Sylow-
2-subgroup of Aut(A) stabilising the flag ®(A) < P(A){c) <- P(A){(c, b) <-A
and [a, o/, o', o] = a?, then

(3) a¥ =d/, with ¢ € Aut(A) defined by

a¥ =a,b¥ =[a, o'],¢¥ = [a, o/, ]

Now a® '=a b, b = b lea?, ¢ = ca?b?, s0 [a,a" a7, o )= b2c2.
Let 7 be the automorphism of A that takes each element of A to its inverse:
Then [a, ia, i, ia] = [c, ia] = a®c?, and [a, ia™ !, ia™t, la™!] = a?b?c?. This
implies that if & € {1, 5}, then none of the elements o*7, a=*, a~*i is an
Aut(A)-conjugate of o; note that [A, o, o] = 1.

N = Naueca)({e, 7). Last paragraph’s calculations yield [N, (a)] < (o). If
d € ®(A), then there is an element of C(«) defined via a — ad, b — b[d, q],
¢ — [d, a, a]. The automorphism thus determined being the unique element of
Cn({a, ®(A))) mapping a to ad, we find that Cy ({o, ®(A))) = (a?, 7, B) with
a?® = ac?, [3, (b, ¢)] = 1. Certainly [B, i] = 1, so we may, setting [3, (] = 1,
make ( reemerge as an element of Z(Aut(Q)).

According to (3), we have o® = a7 with 7 € Aut(A) defined by b™ = b1,
T |(a,c, (4)y = id. For later use, we note that (3) also yields that

ar =a¥,1y defined via a — a,b— b1, ¢ cb?,
(4) af =a¥,y given via a — a,b— bc?, c— ¢,

afr=a¥,y givenvia a— a,br— bt ¢ L
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As |Z(@G)| = 2, with each maximal subgroup U of G there is a unique automor-
phism (y of G with [U, (y] = 1; the subgroup of Aut(G) consisting of the various
Cu being isomorphic with (the dual of) G/®(G) = (a®(G), 1P(G), a®(G)), we
see that it is generated by the maps g — gbZ, g € G, B and ¢ := ((q,4). We
have seen that (a*""(%)) < (a)A, so (a)Achar G and ¢ € Z(Aut(G)).

Let A be embedded into the homocyclic group B = {a, b, d), with d> = ¢, and
extend the action of («, t) to B by setting d* = d~!, d* = da. Using (x), we see
that o(ad) = 8, because [d, 7a] = 1. Next, [aa, %] = 1 = ¢2[a, [B, d]], while
[te, B4 = 1 = [1, [8, d]]. Accordingly, [3, V] € b2CAut(G)(<a, t, A)), whence

4a? and

g% = ¢¥* g € G. Furthermore, [aa, 7] = o4[a, [r, d]], (ca)* = o
[te, 7% =1 = [1, [1, d]]. Accordingly, gIm 4 = g¢¢ g € G.

If ¥ € Caui(c)(A4), then [0, G] € Cq(A) = A. One of the maps g — g%,
d € A, has a® € a(a), we thus need only study the case a’ = aa. In this
case [a, 9% = a® = [a, ¢]. If 1¥ = te with e € A, then [id, aa] = 1 = a?[d, of;
accordingly, e € {c, ¢}, and, as we are free to choose between ¥ and J¢, we
may assume [¢, 9] = ¢. This shows that 9 is the automorphism induced by the
element d from the previous paragraph.

Now let G<K be a finite 2-group and let C' = C'k(G). Our analysis of Aut(G)
implies that K = GCU with ®(U)(UNG) < (C, ¢, ®(A), 2), where 22 € C and
conjugation by z induces some element of () on G. Furthermore, [U, G] <
(A, oy and [®(A), U] = 1. Set H = A(a*)CU; then H <G, K = H{«, 1) and
Hn{a, 1) = {c%, a*). We would now like to produce o € Aut(K) with G° # G.

a) First suppose that C £ G. Then there is z € C with (2?)[z, K] < 2
For h € H s £ = {, € {0, 1} such that [z, h] = c**. Let o be defined via
a +— ax, t — ¢ and h — hb**» whenever h € H. Since b*> € Q,(Z(ACU)),
o |g € Aut(H), while both definitions make o act trivially on HN{«, ¢). Clearly,
(o, 1) = {a, 1)7, and if h € H, then [ax, hb**"] = [, h]c*** while [t, h?] = [1, h]
anyway. If v € (@, 1), h € H, then [h, 7] € Cy(z), so [h, 7] = [h, 7]°. Remark
la) now shows o € Aut(K).

b) From now on we may assume that K = (G, U) where U is as in a). Suppose
that there is z € U inducing ¢ on G. As ¢ € Z(Aut(G)), thereis ¢ = ¢}, € {0, 1}
such that [z, h] = ¢*» whenever h € U. There is an isomorphism o with
a® = az, 1° = ib?, 0|4 =1id, 2° = 2. Indeed, (1b?)? =12 = ¢?, 1b? inverts every
element of A and [1b?, az] = [1z, b%a] = 1, while [d, az] = [d, a], d € A. So
Remark 1a) applies. Finally, [z, (4, )] = 1 and [z, tb?] = . As 0 |yng = id,
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o may be extended to the whole of K by setting h” = hb*"; as [U, b?] = 1, we
find that U = U and [h?, %] = [h, t], h € U. We have also made sure that
[a%, h?] = [a, h] for h € U. Accordingly, o € Aut(K).

¢) Suppose that K = (G, u) with u? € (c?) and conjugation by u inducing
one amongst the set {3, 5¢, 7, 70, 7¢,70¢} on G. Let o = au, and choose
© = o |4 according to the list given in (4); i.e. such that (d¥)** = (d*)¥, d € A.
Please keep in mind that [¢, A] = 1, so (4) covers all possibilities. According
to Remark la), o induces an automorphism on (A, ). Recall that [a, u] €
(a*, ¢?) \ {1}. This easily implies a* = (au)?, so [cu, u] = [a, u] = [, u]°.
Thus o extends to an automorphism of {a, A, u), setting u? = u.

Now suppose that [1, u] = ¢2. Then [au, tb?] = 1 and b? still inverts every
element of A, whilst tb? = 2. So we set 17 = (b? in this case.

If [t, u] = 1, then [¢, au] = 1; this time extend o to the whole of K through
setting (7 = .

d) Suppose that K = (G, u, v) u inducing one of 3, 78, 8¢, 76¢ and con-
jugation by v inducing 7 on G. Then [u, v] € (¢?). Define o (g 4 as in
c). Observe that [au, v] = (au)*[u, v], while one glance at (4) tells us that
[A, 0] < ®(A) < Ca(V). If [u, v] = ¢?, then we let v7 = vb?, and we let v7 = v
if [v, u] = 1. Remark 1a), applied to Q = (G, u), S = (v), says this produces
an automorphism.

e) Next, suppose that there is d € K inducing 9 or else 9¢ on G. Recall
that glm? = g¢¢, g € G. By a), we have K = (G, d, u) where either v = 1,
or u induces B or B¢ on G. We also know that we may take d?> = ¢ and have
noted that o(ad) = 8, whence (A, d, &) has an automorphism o with a” = ad,
0|(a,q) = id. Depending on whether d induces ¥ or ¥¢, either [th™1, ad) =1
or [tb, ad] = 1. We may extend o accordingly to obtain an automorphism of K
and have now proved the lemma.

As stated before, I believe this example to be of minimal order. I also believe
that giving a rigorous proof would be more tedious than rewarding. Here are
some remarks: Let F' have the desired property and let A be a maximal abelian
normal subgroup of F'. As p = 2, A cannot be cyclic — the reader is invited to
verify this for himself. It turns out that A cannot be elementary abelian too, this
is mainly because, if it was, either A itself would not be characteristic in F', or
F could not contain elements acting on A as transvections. Letting K = F'x{(c),
1 # ¢? € Q(G), we find Q1 (F) < F. If exp(A) < 4 and F = Q;(F)(z), with
o(z) = 4 and x uniserial on A, while there is 7 € Aut(F)\Inn(F) with 2™ = 271,
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[T, Q1 (F)] < Q1(A), then F char F(r). This leads to |A| > 25. The example
was constructed with a view to avoid this situation. |

LEMMA 5: Let p be an odd prime, and let P be a finite p-group; let R €
Syl,(Aut(P)). Assume that P satisfies the following conditions.

()
|Z(P)| = p, while [R, P] < ®(P) and

there is a complement U of Inn(P) in R of exponent p.

Let G = («, t) be the group introduced in Lemma 2 and let H = P G be the
wreath product of P with G with respect to the permutation representation
G — Sys given by its action on the right cosets of (1). Then every property
listed in (5) is enjoyed by H, and H is not characteristic in any finite p-group
of which it is a proper subgroup.

Proof. We identify G with its image in Sy, labeling the elements of {1,...,p}
in such a way that (i) is the stabiliser in G of {1} and a = (1, 2,...,p3). Let
Q = PP’ be the base group of H. For i € {1,...,p3} let P, = {f : f €
Q, f(j) = 1 whenever j # i}. Each element x in (Q may be written as a p3-tuple
x = (21,...,xps) where each z; is in P and 27 = (x,
yeG Ifye G, andy = (y1,...,yp2) € Q, then 2¥7 = (21,...,2,3), where

2 = x?lzl. Thus Cg(y7y) is isomorphic with C' x D, where C is the direct

S ,w(p;;)rl) whenever

product of the groups Cp, (y), k running over the set of fixed points of 7, and
D is a direct product of £ copies of P, where £ is the number of orbits of (v) of
length greater than 1. As no element of G'\ {1} has more than p? fixed points,
we find that, if y € G\ {1}, then |Co(y7)| < |P|*" 72, so Cy (yv) < p°|P|22" >,
Since po+m@r°=p) < pm@°=1) for any natural number m, no element outside
of @ can possibly be contained in an Aut(H)-conjugate of P;. Accordingly,
Q char H. |

We now embark on a description of the Sylow p-subgroups of Aut(H). First
of all, we utilise Remark 1d) to obtain Aut(H) = Inn(H)Nayue ) (()). If ()
is a subgroup of H of order p? with a*’ = a1, then // € Ny ((a)) = GCq(a)
and, up to conjugation in G, we have /' = ¢, ¢ € Cg(«). Equivalently, ¢ =
(y,...,y) for some y € P. We have worked out that Cg(ic) 2 Cp(y)P x P?~2.
Accordingly, ¢’ is not an Aut(H )-conjugate of ¢ unless y € Z(P) or, equivalently,
ce Z(Q). Let Cyq)(a) = (2) = Z(H); then there is an automorphism ¢ of H
with ¢ =12, (|(a, @) = id. Now z € ®(Q) < ®(H).
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Recall that the unique p-Sylow-subgroup of Aut(G) is equal to (Inn(G), )

9

where o’ = ai? and Y = 1. We might as well suppose 9 € NSPS(G), setting

17 =17,y € G.

Now Remark 1b) shows how to find J in Naue(a)(G) with ’y"gl =47, y€G.
We identify ¥ and 9. Please note that [, ¢] = id and that [Py, J] = 1 whence
@, Y] € [Q, G] < ®(H), while we know that [G, V] = ®(G).

Next, let 7 be any p-element of Aut(H), 7 ¢ Inn(H). We have seen that we
may presume 05 € Nauy(m) (G) for some power 5 of ¢, whence there are n € G
and 0 € (9) such that 775 = 'ym§, whenever v € G.

Let Q = {P1Z(Q),...,P3Z(Q)}. According to Remark 1c), 7¢Oy 1 acts
on , and must induce some element of Cs,(G). An abelian regular subgroup
of Sq being its own centraliser in So, n may be multiplied by some element of
Z(G) = (aP") such as to ensure that 1 = ¢~ 'n~! simultancously centralises
G and is trivial on €.

Let Coy iy (@) (Q/Z(Q)) = V; then Z(P1) = Z(Q) N P/ is normalised by
V, whence [V, Z(Q)] = 1, since |Z(P)| = p by assumption. Accordingly,
[H, V, V] =1, and V is isomorphic to Hom(P/®(P), Cz)(¢)), and, in particu-
lar, is elementary abelian. It is obvious that [V, H] < ®(H) and that [V, ¢] = 1.

Back to dissecting 7 : Let Z(Py) = (z1) and let Y = (29" [0 < i < p3 — 1);
then Y is a complement to (z1) in Z(Q) stabilised by ¢. Let {q1,...,qx} be a
minimal set of generators of P; and let q;-’b = qlyi, ¢, € P1, y; € Y. The map
qi — qiyi, 1 < i <k, is contained in Aut(P;Z(Q)). For 1 < i < k, we have
y; € Cy (1), for ¢ normalises C(¢); accordingly, there is ¢ € V with ¢f = ¢y,
1 < i <k, and 1! both centralises G and normalises P;, thus is trivial on
Q. There is p € Aut(P;) such that (xq,... ,:Cps)w“fl = (af,... ,1;53) whenever
(w1,...,1p8) € Q. Certainly Cpyg(p,ya) () = Aut(Py), in other words, every
element p of Aut(Py) gives rise to an element of Cy 4 s)(G) in this way. As
(0, ¢, V) < Caweemy(H/P(H)) < Op(Aut(H)), 7 is a p-element if and only if p
is. Accordingly, [P, p] < ®(P), so [H, 7] < ®(H).

Now for the complement: Let Op(Aut(P)) = Inn(P)U, exp(U) = p,
UnNInn(P) = 1. Let U be the group of “diagonal” automorphisms
(@1,...,2p) — (z’f,...,ng,), p € U, of Q. As a part of (5), we are assum-
ing [U, P] < ®(P), so [U, Q] < ®(Q). Now [®(Q), V] = 1 = [Z(Q), U], whence
@, U, V] =1[Q,V, 17] = 1. Thus [[7, V] = 1 by the Three-Subgroup-Lemma.
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On €, (1) has p orbits of length one, and p— 1 orbits of lengths p and p?, respec-
tively; thus ¢ stabilises each orbit of (), hence [Cz(g) (1), V] =1 — Z(Q), after
all, being the permutation module associated with the action of (G, ¥) on Q.
Accordingly, [P, VU, 9 =1=[P, 9V, Vﬁ] Certainly, [V, 9] € Caue(my(a), so
VU, 9] = 1.

If v € Ny(Py), then v normalises each P; and is the product of an inner
automorphism induced by some element of Cz, ) (G) and some element of U.
Let W be a complement in V to Ny (Py) and set T = WU (9, ¢). We have seen
that (W, 9, ¢) < Z(T), in particular, exp(T) = p. As ¥ ¢ Inn(G), T N Inn(H)
is trivial on H/Q, and thus is contained in WU(¢). Furthermore, Ny (G) =
Co(G)G, G is faithful on ©Q, while WU is trivial on ©Q and Nw(P) =1:
An inner automorphism contained in WU would have to be contained in U
and be induced by some element of Cg(G). As Cg(a) = Cg(G), no inner
automorphism of H acts on G like ¢ does. Thus T’ NInn(H) = 1.

Let ¢ € Czq)((t; o?)), and let d; = [c, jal, j € {0,...,p*}. For every j,
d;j € Cygy(a?), while [dji1, ] = [dj, ¢, o] o™t 1 di] 7 = [dj, ¢, o] 2.
Via induction on j we thus obtain [d;, «] = 1 for every j. Let y; = [21, p2_107],
Y2 = [y1, p2-1t], ¥ = [y2, p—20], 2 = [y2, p—10]. Then (z) = Z(H), [y, o = z,
and, as we have just seen, [y, (] = 1. We are going to use the terms y1, y2, y, 2
throughout the remainder of this proof.

Let H <« K with K a finite p-group, and C = Ck(H). We have seen that
K = HCS with exp(S/SNC) = p, and that Cs(G) is trivial on £ and of index
at most p? in S. Furthermore, SC N H = (z). Again, we would like to find
o € Aut(K) that does not stabilise H.

a) First assume that C £ H; then there is z € C with ([, K], 2P) € (z). Let
2P =2 0 <k <p-—1. Let a”* = azx, 1t = iy~ *. Since [ax, ty=F] = aP2* =
(ax)?, o7 multiplicatively extends to an isomorphism (Remark 1a)). Next, let
01 ]g = id and apply Remark 1a) to turn oy into an automorphism of H— one
just needs to point to the fact that [Q, (x, y)] = 1.

If u € SC, there is £ = £, € {0,...,p— 1}, with [z, u] = 2%; let u?? = uy*s.
Then (SC)?2 = SC, while both o7 and oy centralise H N SC = (z). If u €
SC, and g € (Q, t), then clearly [u?2, g] = [u, g]; furthermore, [uy®, ax]
[u, 2][u, a][y’, a] = [u, a]. If w € SC and h € H, then [u*, h2] = [u, h],
and, as [u, h] € (P, aP” Q) < Cy(o1), we have [u®?, h71] = [u, h]°'. We may
combine o7 and o2 into an element of Aut(K), once again using Remark 1a).
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b) We are now entitled to assume that C' = (z) and K = HS, with (5;1(S),
SNH) < (z). Supposing that Cs(G) # 1 we find some element s such that 1 #
s€ Cs(G)NZ(S/(2)). Let £ € {0,...,p—1} with s = 2*, and let (a’)(7)7* =
4] ‘] = a?2! = (as)P, Remark

(as)'(wy=%), i, j € Z. Since [as, '] = oPla, y~

la) becomes available and oy is an isomorphism. For h = (z1,...,2,3) € Q,
let h7' = (z1,...,23) where zj = (Jci)s(hl), 1 < i < p® Recalling that

P? < P,Z(Q), for all i one readily sees that o1 |g € Aut(Q). Furthermore,

3_1 3_o
(x/b o “,C;)z)az — ((;?pg)sp , :El,.il'g, ceey (:rpg_l)sp )s — (1';)3; ;L"l, - ,302)3_1);
in other words, (h®)?* = h(®)' h € Py, i € {0,...,p% —1}. The action

¢ on @ being completely determined by the facts that it centralises

Py and raises ax to its (p + 1)th power, the equation (x’l,...,x;S)LfE =

;L,l,...,x’ps —1) immediately follows. Again, (1) is satisfied, and oy
and oy combine to o € Aut({(H)).

We know that S = Cgs(G)(s, t), where (s, t)(z)/(z) induces a subgroup of
(¥, ¢) on H. Since [z1, Y] = 1 = [aP, 9], we have [y1, V] =1 = [[y1, p2_14], V] =
[y2, ¥]. Now y = [y2, p—2c], and we have seen that [, yo] = 1; accordingly
Y’ = [y2, p—2(ar?)] = y. Note that [Q, ¢] = 1 and every element of Cs(G) acts
on Z(PZ(Q))N®(PZ(Q)) = (z1) and thus must be trivial on Z(Q) anyway.
If w € S, then there is £, € {0,...,p — 1} such that [s, u] = 2%; let u? =
uy, u € S. Then [as, u?] = [, u][s, u][a, y**] = [, u, thus [y, u??] =
[y, u] = [v, u)”" whenever v € G- recall that [G, S] < (iP, a?’) < Cy(oy).
Let ¢ € P; for some j € {1,...,p*}. From [s, ul, [u, 2] € Z(Q), while [¢, u] €
P;Z(Q) and [Z(Q), 5] = 1 we derive that (¢°)"”” = (¢’ )" = ¢» " = (¢*)7".
Conjugation is a homomorphism, so (¢7*)*"* = (¢*)7* whenever ¢ € Q, while,
finally, for ¢ € Q, v € G, ((gv)™)*” = ((¢")* " (N7)*” = (¢*) () =
(gv)?*. Since SN H < (z), Remark 1a) says that the map hu — h7'u2, h € H,
u € U, is contained in Aut(K).

We have shown that H is not characteristic in K unless Cg(G) = 1, which

implies |S| < p%.

of wy~

(z, =

Suppose that K = (H,s,t), where s induces some element of (Wﬁ on H
and ¢ induces some element of YWU. Let P = 2¢, and [t, s] = 2% -naturally,
0< /¢ ¢s; <p—1. Asin the final two paragraphs of the proof of Lemma 2,
we may apply () and infer that for p > 3, (at)? = oPt? = [at, y~*] while if
p = 3, then (at)® = o33 - a® = [at, t*y~¢]. We define o, accordingly, setting
%t at, 1 =y~ if p > 3,170 = Ay~¢ for p = 3. Applying Remark 1b),
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we see that o1 gives rise to an isomorphism. Extend o1 to (G, s, t) via t — ¢,
s+ sybs. If p =3, then (1*)3 =13, s0 a”tt = (at)! = at(P) = a”* (1P71), while
[at, sy*] = [a, y*][t, s] = 1. Clearly, [17t, t] = 1, while 17, 57| = [1, 5] = 2.
Applying Remark 1a) to the semidirect product G (s, t), we see that o1 becomes
an isomorphism once we have extended it by demanding multiplicativeness.
The automorphism induced by t is a product d¢, ¢ € wU. Regard (a, ¥) as
a subgroup of Sys. Using () like in the proof of Lemma 2, we find that a = 3
is another p3-cycle, hence there is £ € Sps with at = (3. There o9 € Aut(Q)

G-1)
given by (z1,...,2p8) = (21,...,2,3), with 2} = a% ', 1<i<p’ Then
(zf,... ,sc;)3)”‘t = (x;;,,, ... ,w;Ll). The action of the group (¢, t?*) on @Q is

fully determined by its centralising P, and its action on («). This implies that
o1, 02, (G, t) (taking the role of S) and @ (in the role of @) satisfy (1). Thus
o1 and o9 combine to an isomorphism o of (H, t); as [@, s|] = 1, and o7 is an
isomorphism, setting s” = s has o extended into an element of Aut(K).

Finally, let K = (H, s), where the automorphism induced by s on H is in
CiﬂjWQ, 0 <i<p—1. We define o, just as before, letting 3 = a¥?, o = 3.
Let s? = z¢. The isomorphism oy is defined via o — as, s — s, 1 — 1y~ ¢, if
p >3, Ay~ p=3.If p> 3, then [as, '] = [sa, '] = Pz
4yifl] — [504, L4yi72] = al2f = (at)B_
Thus o7 yields an isomorphism; Remark 1a) again delivers.

i =i

aPsP = (as)P, while for p = 3 we get [as, ¢

LEMMA 6: Let P be a nonabelian finite 2-group such that

(6)
|Z(P)| =2, every 2-automorphism of P is trivial on P/®(P) and there is

an elementary abelian complement U to Inn(P) in

a Sylow-2-subgroup of Aut(P).

Let H be the wreath product H = P! D, {a, t) = D = Dg, o(a) =4, o(t) = 2,
ot = a1 with respect to the action of D on the right cosets of (1) in D. Then
H inherits each of the properties listed in (6), while there is no finite 2-group
K properly containing H as a characteristic subgroup.

Proof. First of all, |Z(H)| = 2, and Z(Q) is the permutation module over
GF(2) with respect to the prescribed embedding D — S;. Let Q = P* be
the base group of H, and write the elements of @ as quadruples (z1,...,x4),
T1,...,04 € P, with (z1,...,24)° = (y5-1,...,x5-1), 0 € D. For 1 <i <4,
let P; be the group of quadruples of elements of P with all entries equal to
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1 apart from possibly the ith one. If g € P and ¢ = (g, 1,1, 1) € Py, then
Caolg) = Cr(g) x P, while Cu(q) = Cola) (). For v € H\ Q, [Co(w)| < |PI?,
and |Cg(z)| = |PJ? if and only if z = §y, where § is a noncentral involution in
D and y € Z(Q). Accordingly, Cg(x) < (a?, 2)Cq(z), and z and ¢ cannot be
Aut(H)-conjugates. Thus Q char H.

With regards to methods as well as to results, the analysis of 2-automorphisms
of H proceeds much as its counterpart in Lemma 5, thus is presented more
succinctly. As before, Remark 1d) yields Aut(H) = Inn(H)Npuem) ((@)). In
the present circumstances, this means Aut(H) = Inn(H)Cauymy(a). If ¢ €
Caut(my (@), then [p, o] € No((a)) = Cq({a, 1)); taken together with |Cq (1%)] =
|Cq(¢)| this implies [¢, ¢] € Z(H). Let Z(H) = (z). There is { € Aut(H)
defined by & = 2, Clta,@y = id; we know at this point that Aut(H) =
Inn(H )Cauea)(D){C). Note that ¢ € Z(Aut(H)) and [¢, H] < ®(H).

According to Remark 1c), Aut(H) acts on the set Q@ = {P,Z(Q) : 1 < i <4},
and if ¢ € Cpyy(a)(G), then we may take ¢ to be trivial on 2, we could multiply
by the inner automorphism induced by a? otherwise. Let

V =Cc,uim (D) (Q/Z(Q));

as Z(P1) = Z(PLZ(Q)) N (P Z(Q)) [V, Z(Q)] = 1, whence V is elementary
abelian and isomorphic to Hom(P/®(P), Cz()(+)). Observe that [V, (] = 1
and [V, H] < ®(H).

Let Z(P;) = (2i), 1 < i < 4, and let Y = (29,23,24). If ¥ € Cawe(an)(G)
and % is trivial on Q, then [¢, Pi] < PiCy (), there is v € V such
that YN, @) (P1). As (V.() < Oz(Aut(H)), each 2-automorphism of
H is a product ¢n, where n € (Inn(H),(,V) and ¢ is a 2-element of N :=
Ney i (@) (Py). If p € U, then let p be the automorphism of @ defined by
(21, 22,3, 24) — (24,...,24); the map p — p, p € Aut(Py), is an isomorphism;
asCn(P) =1, N={p:pe Aut(P)}. Let U = {5: p € U}. Then [U, Z(Q)] =
1 = [V, ®(Q)], condition (6) says [U, H] € ®(H), so 1 = [Q, V,U][Q, U, V] so
[U, V] =1.

Through replacing V' by a complement W of Ny (P;) in V, we thus obtain an
elementary abelian supplement L = Wﬁ(() of Inn(H) in a Sylow 2-subgroup
of Aut(H). Let v € LNInn(H) be conjugation by the element h. Then
Cu(a) N Ny ({1, 2)) = (a?, Co(a)), so [¢), ] = 1 and ¢» € WU. This in turn
implies h € Co(a), so ¢ € U; all in all, L N Inn(H) = U NInn(P) = 1.
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Now let H < K be a finite 2-group and let C = C(H). If C £ H, then there
is x € C such that (z?)[z, K] < Z(H). We know that K = HM, where C C M
and M/C induces a subgroup of L on H. If m € M, then there is ¢, € {0, 1}
such that [z, m] = 2. Let (21) = Z(Py) and let y = 212%", Then [y, o] = z,
while [1, (ta?, Q)] =1 = [y, L]. Define oy via a — ax, ¢ — 1y*, where 2% = 2*,
k € {0, 1}, and o1 |¢ = id. Since [ay, ty*] = o?2*, imposing multiplicativeness
makes o1 an isomorphism. Let oy |y be defined via m — myeﬂ"7 m € M.
As [y, M] = 1, o2 is an isomorphism and from what we have learned about
L NnInn(H) in particular, that it consists of inner automorphisms induced by
elements of Cg(D) — we know that o1 and o9 are trivial on H N M as well as
[H, M]. Thus Remark 1a) yields that o : K — K, defined via (zh)? = 271 h°2,
he H,x € M, is in Aut(H).

We may now assume that K = HM, with ®(M)(H N M) < (z). If there
is s € M with s inducing some element of UW on H , then we define o; via

a— as, t — wyk with s2 = zF. Now [as, w¥] = a?2F

= (as)?, so o1 gives
rise to an isomorphism. We extend oy via (x1,z9,23,24) — (21,23, 23, 25),
(w1, 22,73, 24) € Q; as (w1,235,13,25)* = (23, 21,25, 23)° = (T4, 27, T2, 23),
Remark la) says o7 is an isomorphism. If m € M, then there is ¢, € {0,1}
’

S

such that [s, m] = 2" and we let m§ = my’, m € M. Again, oy |g is an
isomorphism, while, for m € M, [as, my‘™] = [s, m][o, y*"] = 1 = [a, m] and
b, my“] = [t, m]; if i € {1,2,3,4} and q € Q, then [¢° , my‘] = ¢
As [H, M] < ®(Q) < Cg(o1), Remark 1a) again comes into play and proves o
to be contained in Aut(K).

The only possibility left for us to consider is K = H({s), where s induces
Cpv on H, where p € U, v € V. On (a, Q, s) define o exactly as before
(in particular, s° = s). Let s2 = 2% k € {0, 1} and let . = 1"+, Since
[as, ¥ +1] = a22FH1 2 = a22F, Remark 1a) may be brought forward once more

to show o € Aut(K). |

Proof of the Theorem. As is well-known (see [4], 15.3) the Sylow-p-subgroups
of Spn are isomorphic with the n-fold wreath product Z/pZ .. VZ/pZ. If p is
odd, let G be the group from Lemma 2. Using this lemma and letting Lemma
5 provide the inductive step, we obtain that, for n € N, the n-fold wreathed
product G, = G1...0 G, (n times) with G embedded into Sys as in 3, is not
characteristic in any finite p-group properly containing it. If G, contains a
subgroup isomorphic to the n-fold wreath product Z/pZ (... Z/pZ, then, as
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PG has a subgroup isomorphic to the regular wreath product P (a”2>, PG
contains an isomorphic copy of a Sylow-p-subgroup of Spn+1.

Now for p = 2 : In the semidihedral group P = (n,6|n® =1 = 6%,7° = n3) =
SD1g, we have ®(P) = (n?), n®(P) is comprised entirely of elements of order
8, nd®(P) consists of elements of order 4, while every element of 6®(P) is an
involution. Thus Aut(P) is trivial on P/®(P), and, moreover, acts on (§)F.
Thus if ¢ € Aut(P) \ Inn(P), ¢ may be taken to centralise § and normalise (n).
Multiplying by 6, if necessary, we find n¢ = n°, 6¢ = 6. Accordingly, the group
SDq is fit to play the role of P in Lemma 6; this lemma then inductively yields
that the n-fold wreath products SD161Dsl. . .0Ds (with respect to the embedding
Dg — S4) are never characteristic in finite 2-groups properly containing them.
Arguing as for odd p, we see that an n-fold wreathed product of this kind has
a subgroup isomorphic with the n-fold wreath product Z/2Z1...1Z/27Z. This
proves the theorem. |
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