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ABSTRACT

Answering a question raised by Y. Berkovich, we give examples of finite p-

groups G with the property that the only finite p-group K with Gchar K,

is G itself. We also prove a theorem stating that every finite p-group is

contained in such a group G.

Let p be a prime. Y. Berkovich has recently raised the question whether there

is a finite p-group G which is not characteristic in any finite p-group properly

containing it. Since the world of finite p-groups is densely populated, theorems

governing all of its inhabitants are rare, and it seems likely that questions like

this are raised in the hopes of a negative answer. However, we are going to

prove

Theorem: For every finite p-group G there is a finite p-group H such that

G ≤ H and H is not characteristic in any finite p-group properly containing it.

This theorem suggests that the answer to the question what makes a finite

p-group G characteristic in another finite p-group, K, partially lies within G

itself. It has been known for a long period (see [2]) that a finite p-group G
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has outer automorphisms of p-power order; the theorem indicates the possibil-

ity that, given any finite p-group G, one cannot form arbitrarily long chains

G = G1 charG2 char . . . charGn of extensions by outer p-automorphisms.

We are first going to present examples of finite p-groups that are not charac-

teristic in any finite p-group in which they are properly contained. These ex-

amples I believe to be as small as possible; this will be commented on after the

reader has seen the examples. The theorem as such will be proved inductively,

using a wreath product construction. The cases p = 2 and p odd must be

handled separately throughout.

Notation: The i-th term of the lower central series of the group P will be

denoted by γi(P ). For group elements x and y, we let [x, y] = [x, 1y], [x, ny] =

[[x, n−1y], y], 2 ≤ n ∈ N. We will use “<· ” to say “is a maximal subgroup of”.

We will otherwise be using the notation introduced in Chapter 5 of [3].

We will be using the following corollary to the Hall–Petrescu formula, to be

found e.g. in [1] (11.9): If x, y are elements of the group H , then

(∗) (xy)p
j

≡ xp
j

yp
j

mod fj(γ2(H))

j∏

`=1

fj−`(γp`(H))

Remark 1: Some facts on automorphisms of semidirect products and wreath

products.

a) First of all, let H = QS and Ĥ = Q̂Ŝ be products of the normal subgroups

Q, Q̂ and the subgroups S and Ŝ, respectively. If σ1 : Q→ Q̂ and σ2 : S → Ŝ

are isomorphisms satisfying the conditions

σ1 |Q∩S and σ2 |Q∩S both induce the same isomorphism Q ∩ S → Q̂ ∩ Ŝ and

(qσ1 )s
σ2

= (qs)σ1 , whenever s ∈ S and q ∈ Q(1)

then there is an isomorphism σ : H → Ĥ given by (qs)σ = qσ1sσ2 . Indeed, the

first condition in (1) makes σ well-defined, while the second yields (sq)σ(tr)σ =

sσ2qσ1tσ2rσ1 = (st)σ2(qσ1)t
σ2
rσ1 = (st)σ2(qtr)σ1 = (stqr)σ , whenever q, r ∈ Q

and s, t ∈ S.

b) Let H = R o S be the wreath product of the groups R and S with respect

to a faithful transitive permutation representation of S on some set Ω, and let

Q = RΩ be its base group. Let us identify S with its image in SΩ. If τ ∈ NSΩ(S)

and f ∈ Q, define f τ
′

via setting f τ
′

(ω) = f(ωτ
−1

), ω ∈ Ω. For t ∈ S, f ∈ Q,
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ω ∈ Ω, we obtain (f τ
′

)t
τ

(ω) = f τ
′

(ωt
−τ

) = f(ωτ
−1t−1

) = f t(ωτ
−1

) = f tτ
′

(ω).

According to a), this entails that H has an automorphism defined by (sf)τ =

sτf τ
′

, s ∈ S, f ∈ Q.

c) Let H, Q be as in b) and suppose that QcharH . For ω ∈ Ω let Rω be

the set {f ∈ RΩ : f(ν) = 1 whenever ω 6= ν ∈ Ω}. If f ∈ Q, then CQ(f)

is isomorphic to the direct product of the groups CRω
(f(ω)), ω ∈ Ω. Thus

if τ ∈ Aut(H), ω ∈ Ω and f ∈ Rω then there is ν ∈ Ω with f τ ∈ RνZ(Q).

Letting f, g ∈ Rω \ Z(Rω) and applying this argument to f , g, fg, we see that

there is ν ∈ Ω with f τ , gτ ∈ RνZ(Q). In other words, 〈τ〉 acts on the set

{RωZ(Q) : ω ∈ Ω}.

d) Now let p be a prime, and R a finite p-group, let S = 〈α〉 ∼= Z/pnZ and

let H be the regular wreath product of R and S. Let 〈β〉 be a complement

of Q in H , let Q1 = Q, Qi+1 = Φ(Qi), i ∈ N, and suppose that there is

x ∈ Q with 〈β〉x = 〈αy〉, y ∈ Qi. From o(αy) = pn and (∗), we derive

[y, pn−1α] ∈ Qi+1. Regarded as an 〈α〉-module, V := Qi/Qi+1 is a direct sum

of isomorphic copies of GF (p)[〈α〉]. This entails that yQi+1 ∈ [V, α]; letting

yQi+1 = [α, v], v = uQi+1, we obtain that βxu
−1

∈ 〈α〉Qi+1. Via induction on

i, we find that 〈α〉 and 〈β〉 are actually Q-conjugates, in particular Aut(H) =

Inn(H)NAut(H)(〈α〉).

Lemma 2: Let p be an odd prime and let G be the semidirect product of

〈α〉 with 〈ι〉, where o(α) = p3, o(ι) = p2, αι = αp+1. The group G is not

characteristic in any finite p-group properly containing it.

Proof. Observe that γ2(G) = 〈αp〉, γ3(G) = 〈αp
2

〉 = Z(G), Φ(G) = 〈αp〉〈ιp〉.

Using (∗), we obtain that

(2) For r, s, t ∈ Z, (αrιs)p ≡ αrpιsp(mod 〈αp
2

〉),

while [αιtp, ι] = αp = (αιtp)p.

Using (2), we find that Ω2(G) = 〈ι, αp〉, while the elements g of G enjoying

the property that o(g) = p3 and there is x in G satisfying gx = gp+1 are precisely

the elements αrιsp with r not divisible by p.

Let H ∈ Sylp(Aut(G)); both 〈ι〉Φ(G) and 〈α〉Φ(G) having just been seen to

be characteristic in G, we have [G, H ] ≤ Φ(G). Let ϑ ∈ H \ NH(〈α〉); upon

maybe replacing ι be some p′-power, there is k ∈ N such that αϑ = αkp+1ιp,

whence αϑι̃ = αιp for some power ι̃ of ι and we may assume αϑ = αιp. By
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(2), this entails [αp, ϑ] = 1, whence [αιp, ιϑ] = αp. Thus ιϑ = ιαp` for some `.

Replacing ϑ by the automorphism g 7→ gα
iϑ for a suitable i gets us to ιϑ = ι,

αϑ = αιp. Note that [α, ϑp] = [α, ϑ]p = 1, whence ϑp = id.

If β ∈ NH(〈α〉), then [α, βιk] = 1 for some k, as, indeed, 〈ι〉 induces the

Sylow-p-subgroup of Aut(〈α〉) on 〈α〉. We may thus presume β ∈ CH(α). Then

[β, ι] ∈ CΩ2(G)(α) = 〈αp〉, which shows β ∈ Inn(G).

As H = 〈ϑ, NH(〈α〉)〉, H = 〈ϑ, Inn(G)〉. The group G must have non-inner

p-automorphisms ([2]), so ϑ exists; we might also apply Remark 1a).

Let G/K be a finite p-group. We would like to produce an automorphism σ

of K that does not normalise G.

Let C = CK(G). The description of Aut(G) just procured yields that K =

GC〈t〉, where either t = 1 or t induces ϑ on G. Hence tp ∈ C, [t, 〈ι, Φ(G)〉] = 1,

C〈t〉∩G ≤ 〈αp
2

〉. If C 6⊂ G, then there is x ∈ C such that 〈xp, [x, K]〉 ≤ Z(G) =

〈αp
2

〉. Let ασ = αx. There is ` ∈ {0, . . . , p − 1} satisfying xp = α`p
2

. Then

(αx)p = αpxp = [αx, ιι`p]. This amounts to saying that the maps σ1 : α 7→ αx,

σ2 : ι 7→ ιι`p satisfy (1), thus Remark 1a) says that the map αiιj 7→ αiσ1 ιjσ2 is

an isomorphism.

Let U = 〈C, t, ιp〉 = 〈C, t〉×〈ιp〉. If u ∈ U , there is `u ∈ {0, . . . , p−1} satisfy-

ing [y, u] = αp
2`u . It is well-known (and easily checked) that, if H is any finite

p-group, if z ∈ Ω1(Z(H)) and H1 <·H = 〈H1, y〉, there is an automorphism of

H centralising H1 and mapping y to yz. Note that 〈ιp, αp
2

〉 = U ∩G ≤ CU (x)

and |U : CU (x)| ≤ p. Hence there is σ2 ∈ Aut(U) defined by uσ2 = uι−p`u ,

u ∈ U . Furthermore, [αy, uσ2 ] = [α, u]α−p2`u [y, u] = [α, u], while [ιι`p, uσ2 ] =

[ι, u] = 1. Since [G, 〈ϑ〉] = 〈ιp, αp
2

〉 = U ∩ G ≤ CG(σ1) ∩ CU (σ2), these

considerations imply that

[u, g] = [uσ2 , gσ1 ] = [u, g]σi ∈ Z(U).

whenever u ∈ U and g ∈ G, i = 1, 2. The maps σ1 and σ2 satisfy the require-

ments of (1), thus Remark 1a) says that σ, defined by (ug)σ = gσ1uσ2 , u ∈ U ,

g ∈ G, is in Aut(K).

It remains to investigate the possibility that K = 〈G, t〉, conjugation by t

inducing ϑ on G. Let tp = αp
2`, ` ∈ {0, . . . , p−1}. If p > 3, then, as [α, t, t] = 1

and 〈[t, α, α]〉 = 〈αp
2

〉 while [ι, t] = 1 anyway, we have γp(〈G, t〉) = 1, in

particular (αt)p = αptp = αpαp
2` by (∗). Thus [αt, ιι`p] = [α, ι]αp

2` = (αt)p.

Applying Remark 1a) yields an isomorphism σ mapping α to αt, ι to ιι`p. Since
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[ιι`p, t] = 1 = [ι, t] and (αt)t = αtιp = αt(ιι`p)p, we may set tσ = t and refer to

Remark 1a) to extend σ into an automorphism of K.

If p = 3, then (αt)3 = α3t3[ι−3, α] = α3+9` · α9, whence [αt, ιι3(`+1)] =

[α, ι]α9(`+1) = (αt)3. Define σ via α 7→ αt, ι 7→ ιι3(`+1), t 7→ t.

Remark 3: If p is odd and F is a p-group of order less than p5, then F is

characteristic in some finite p-group properly containing F .

A short justification: Let F be a finite p-group of order at most p4; if p > 3

or if cl(F ) ≤ 2, then F is regular. Assume that |f1(F )| ≤ p. Then Ω1(F )

has index at most p in F and (xy)p = xp whenever y ∈ Ω1(F ) and x ∈ F .

Letting 1 6= z ∈ Ω1(Z(F )), K = F 〈c〉, [F, c] = 1, cp = z, we see that F charK.

If p = 3 and F is of maximal class, then A = CF (F ′) is abelian of order 33.

Let F = A〈x〉, and let K = F 〈t〉 with 〈t3, [t, 〈x〉F ′]〉 = 1 and [A, t] = Z(F );

in K, A is no longer characteristic, so neither is F . Certainly, F cannot be

abelian, so |f1(F )| = p2, and F is metacyclic. Let F = 〈x〉〈y〉 with 〈x〉 / F ,

and either o(x) = p2 and xy = xp+1 or o(x) = p3 and xy = xp
2+1. In the

second case, F char G1 with G1
∼= G, (F ∼= 〈α, ιp〉 being characteristic in G

by (2)). In the first case, there is τ ∈ Aut(F ) with xτ = xy, yτ = y. If

|F | = p4, then let H be the semidirect product F 〈τ〉. Then f1(H) = f1(F ),

and F = CH(f1(H)) char H . If |F | = p3 and p > 3, then let H = F 〈t〉 with

tp = xp and t inducing τ on F . For 0 ≤ i, j ≤ p − 1, 0 ≤ k ≤ p2 − 1,

(xkyitj)p = xptjp 6= xp using (∗), and no automorphism of H could map x to

xkyitj . If |F | = 33, then let H = F 〈τ〉 be the semidirect product. Suppose that

xσ = uv, u = xiz v = tj , i, j ∈ {1, −1}, z ∈ 〈y, x3〉; from x3 = x3i[v, xi, xi],

we derive i = −1 = j. If 3 does not divide i, then CH(xitz), z ∈ 〈y, x3〉, is

equal to 〈xitz, x3〉, so tσ ∈ t〈y, x3〉. Thus (xt)σ ∈ x−1〈y, x3〉, so o((xt)σ) =

9 6= 3 = o(xt). Accordingly, 〈xH〉 = F charH .

Lemma 4: Let p = 2, let A = 〈a, b, c〉 be homocyclic of exponent 4 and rank

3, let G = 〈A, α, ι 〉 where

aα = ab, bα = bc, cα = ca2,

dι = d−1, d ∈ A,

α8 = 1 = ι4 = [α, ι], ι2 = c2.

Then if K is a finite 2 group with G < K, G is not characteristic in K.
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Proof. Let {a1, b1, c1} be any set of generators of A; then there is ϕ ∈ Aut(A)

with dϕ = d1, d ∈ {a, b, c} — A being the free abelian group of rank 3 and

exponent 4, after all. Right now this remark is directed at α, yet we will bear

it in mind.

Note that CA(α) = Z(G) = 〈c2〉, while Φ(G) = 〈α2, b, c,Φ(A)〉 and G′ =

[A, G] = 〈b, c,Φ(A)〉. Furthermore, [a, α4] = b2c2 and [b, α4] = c2, while

CA(α4) = 〈c,Φ(A)〉 and [b, α2] = a2c2. Thus o(α) = 8, CG(b) = A, and A =

CG(G′) char G. This implies that 〈A, ι, α4〉 = CG(A/Φ(A)) is likewise charac-

teristic, whence Aut(G) normalises the chain Φ(G) <·AΦ(G) <·AΦ(G)〈ι〉 and

thus is a 2-group.

Let d = aibjck with i, j, k ∈ Z be any element of A. Then [d, α] = bicja2k,

[d, α, α] = cia2jb2k, and [d, α, α, α] = a2ib2jc2k = d2. Thus if α′ is an Aut(A)-

conjugate of α, then [a, α′, α′, α′] = a2. If α′ is contained in the unique Sylow-

2-subgroup of Aut(A) stabilising the flag Φ(A) <·Φ(A)〈c〉 <·Φ(A)〈c, b〉 <·A

and [a, α′, α′, α′] = a2, then

(3) αψ = α′, with ψ ∈ Aut(A) defined by

aψ = a, bψ = [a, α′], cψ = [a, α′, α′]

Now aα
−1

= a−1bc−1, bα
−1

= b−1ca2, cα
−1

= c−1a2b2, so [a, α−1, α−1, α−1]= b2c2.

Let ι̃ be the automorphism of A that takes each element of A to its inverse:

Then [a, ι̃α, ι̃α, ι̃α] = [c, ι̃α] = a2c2, and [a, ι̃α−1, ι̃α−1, ι̃α−1] = a2b2c2. This

implies that if k ∈ {1, 5}, then none of the elements αk ι̃, α−k, α−k ι̃ is an

Aut(A)-conjugate of α; note that [A, α4, α4] = 1.

N = NAut(A)(〈α, ι̃〉). Last paragraph’s calculations yield [N, 〈α〉] ≤ 〈α4〉. If

d ∈ Φ(A), then there is an element of CN (α) defined via a 7→ ad, b 7→ b[d, α],

c 7→ [d, α, α]. The automorphism thus determined being the unique element of

CN (〈α, Φ(A)〉) mapping a to ad, we find that CN (〈α, Φ(A)〉) = 〈α4, ι̃, β〉 with

aβ = ac2, [β, 〈b, c〉] = 1. Certainly [β, ι̃] = 1, so we may, setting [β, ι] = 1,

make β reemerge as an element of Z(Aut(G)).

According to (3), we have α5 = ατ with τ ∈ Aut(A) defined by bτ = b−1,

τ |〈a, c,Φ(A)〉 = id. For later use, we note that (3) also yields that

(4)

ατ = αψ , ψ defined via a 7→ a, b 7→ b−1, c 7→ cb2,

αβ = αψ , ψ given via a 7→ a, b 7→ bc2, c 7→ c,

αβτ = αψ , ψ given via a 7→ a, b 7→ b−1c2, c 7→ c−1.



Vol. 166, 2008 p-GROUPS NOT CHARACTERISTIC IN ANY p-GROUP 103

As |Z(G)| = 2, with each maximal subgroup U of G there is a unique automor-

phism ζU of G with [U, ζU ] = 1; the subgroup of Aut(G) consisting of the various

ζU being isomorphic with (the dual of) G/Φ(G) = 〈αΦ(G), ιΦ(G), aΦ(G)〉, we

see that it is generated by the maps g 7→ gb
2

, g ∈ G, β and ζ := ζ〈α,A〉. We

have seen that 〈αAut(G)〉 ≤ 〈α〉A, so 〈α〉Achar G and ζ ∈ Z(Aut(G)).

Let A be embedded into the homocyclic group B = 〈a, b, d〉, with d2 = c, and

extend the action of 〈α, ι〉 to B by setting dι = d−1, dα = da. Using (∗), we see

that o(αd) = 8, because [d, 7α] = 1. Next, [αa, βd] = 1 = c2[α, [β, d]], while

[ιc, βd] = 1 = [ι, [β, d]]. Accordingly, [β, ϑ] ∈ b2CAut(G)(〈α, ι, A〉), whence

g[β,ϑ] = gb
2

, g ∈ G. Furthermore, [αa, τd] = α4[α, [τ, d]], (αa)4 = α4a2 and

[ιc, τd] = 1 = [ι, [τ, d]]. Accordingly, g[τ, d] = gζc, g ∈ G.

If ϑ ∈ CAut(G)(A), then [ϑ, G] ∈ CG(A) = A. One of the maps g 7→ gdϑ,

d ∈ A, has αdϑ ∈ α〈a〉, we thus need only study the case αϑ = αa. In this

case [α, ϑ2] = a2 = [α, c]. If ιϑ = ιe with e ∈ A, then [ιd, αa] = 1 = a2[d, α];

accordingly, e ∈ {c, c−1}, and, as we are free to choose between ϑ and ϑζ, we

may assume [ι, ϑ] = c. This shows that ϑ is the automorphism induced by the

element d from the previous paragraph.

Now let G/K be a finite 2-group and let C = CK(G). Our analysis of Aut(G)

implies that K = GCU with Φ(U)(U ∩G) ≤ 〈C, c, Φ(A), z〉, where z2 ∈ C and

conjugation by z induces some element of 〈ζ〉 on G. Furthermore, [U, G] ≤

〈A, α4〉 and [Φ(A), U ] = 1. Set H = A〈α4〉CU ; then H / G, K = H〈α, ι〉 and

H ∩〈α, ι〉 = 〈c2, α4〉. We would now like to produce σ ∈ Aut(K) with Gσ 6= G.

a) First suppose that C 6≤ G. Then there is x ∈ C with 〈x2〉[x, K] ≤ c2.

For h ∈ H s ` = `h ∈ {0, 1} such that [x, h] = c2`h . Let σ be defined via

α 7→ αx, ι 7→ ι and h 7→ hb2`h whenever h ∈ H . Since b2 ∈ Ω1(Z(ACU)),

σ |H ∈ Aut(H), while both definitions make σ act trivially onH∩〈α, ι〉. Clearly,

〈α, ι〉 ∼= 〈α, ι〉σ, and if h ∈ H , then [αx, hb2`h ] = [α, h]c4`h while [ι, hσ] = [ι, h]

anyway. If γ ∈ 〈α, ι〉, h ∈ H , then [h, γ] ∈ CH(x), so [h, γ] = [h, γ]σ. Remark

1a) now shows σ ∈ Aut(K).

b) From now on we may assume thatK = 〈G, U〉 where U is as in a). Suppose

that there is z ∈ U inducing ζ on G. As ζ ∈ Z(Aut(G)), there is ` = `h ∈ {0, 1}

such that [z, h] = c2`h whenever h ∈ U . There is an isomorphism σ with

ασ = αz, ισ = ιb2, σ |A = id, zσ = z. Indeed, (ιb2)2 = ι2 = c2, ιb2 inverts every

element of A and [ιb2, αz] = [ιz, b2α] = 1, while [d, αz] = [d, α], d ∈ A. So

Remark 1a) applies. Finally, [z, 〈A, α〉σ] = 1 and [z, ιb2] = c2. As σ |U∩G = id,



104 BETTINA WILKENS Isr. J. Math.

σ may be extended to the whole of K by setting hσ = hb2`h; as [U, b2] = 1, we

find that Uσ ∼= U and [hσ, ισ] = [h, ι], h ∈ U . We have also made sure that

[ασ , hσ] = [α, h] for h ∈ U . Accordingly, σ ∈ Aut(K).

c) Suppose that K = 〈G, u〉 with u2 ∈ 〈c2〉 and conjugation by u inducing

one amongst the set {β, βζ, τ, τβ, τζ, τβζ} on G. Let ασ = αu, and choose

ϕ = σ |A according to the list given in (4); i.e. such that (dϕ)αu = (dα)ϕ, d ∈ A.

Please keep in mind that [ζ, A] = 1, so (4) covers all possibilities. According

to Remark 1a), σ induces an automorphism on 〈A, α〉. Recall that [α, u] ∈

〈α4, c2〉 \ {1}. This easily implies α4 = (αu)4, so [αu, u] = [α, u] = [α, u]σ.

Thus σ extends to an automorphism of 〈α, A, u〉, setting uσ = u.

Now suppose that [ι, u] = c2. Then [αu, ιb2] = 1 and ιb2 still inverts every

element of A, whilst ιb2 = c2. So we set ισ = ιb2 in this case.

If [ι, u] = 1, then [ι, αu] = 1; this time extend σ to the whole of K through

setting ισ = ι.

d) Suppose that K = 〈G, u, v〉 u inducing one of β, τβ, βζ, τβζ and con-

jugation by v inducing τ on G. Then [u, v] ∈ 〈c2〉. Define σ |〈G, u〉 as in

c). Observe that [αu, v] = (αu)4[u, v], while one glance at (4) tells us that

[A, σ] ≤ Φ(A) ≤ CA(V ). If [u, v] = c2, then we let vσ = vb2, and we let vσ = v

if [v, u] = 1. Remark 1a), applied to Q = 〈G, u〉, S = 〈v〉, says this produces

an automorphism.

e) Next, suppose that there is d ∈ K inducing ϑ or else ϑζ on G. Recall

that g[τ, ϑ] = gζc, g ∈ G. By a), we have K = 〈G, d, u〉 where either u = 1,

or u induces β or βζ on G. We also know that we may take d2 = c and have

noted that o(αd) = 8, whence 〈A, d, α〉 has an automorphism σ with ασ = αd,

σ |〈A, d〉 = id. Depending on whether d induces ϑ or ϑζ, either [ιb−1, αd] = 1

or [ιb, αd] = 1. We may extend σ accordingly to obtain an automorphism of K

and have now proved the lemma.

As stated before, I believe this example to be of minimal order. I also believe

that giving a rigorous proof would be more tedious than rewarding. Here are

some remarks: Let F have the desired property and let A be a maximal abelian

normal subgroup of F . As p = 2, A cannot be cyclic — the reader is invited to

verify this for himself. It turns out thatA cannot be elementary abelian too, this

is mainly because, if it was, either A itself would not be characteristic in F , or

F could not contain elements acting on A as transvections. Letting K = F ∗〈c〉,

1 6= c2 ∈ Ω1(G), we find Ω1(F ) < F . If exp(A) ≤ 4 and F = Ω1(F )〈x〉, with

o(x) = 4 and x uniserial on A, while there is τ ∈ Aut(F )\Inn(F ) with xτ = x−1,
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[τ, Ω1(F )] ≤ Ω1(A), then F char F 〈τ〉. This leads to |A| ≥ 26. The example

was constructed with a view to avoid this situation.

Lemma 5: Let p be an odd prime, and let P be a finite p-group; let R ∈

Sylp(Aut(P )). Assume that P satisfies the following conditions.

(5)
|Z(P )| = p,while [R, P ] ≤ Φ(P ) and

there is a complement U of Inn(P ) in R of exponent p.

Let G = 〈α, ι〉 be the group introduced in Lemma 2 and let H = P oG be the

wreath product of P with G with respect to the permutation representation

G → Sp3 given by its action on the right cosets of 〈ι〉. Then every property

listed in (5) is enjoyed by H , and H is not characteristic in any finite p-group

of which it is a proper subgroup.

Proof. We identify G with its image in Sp3 , labeling the elements of {1, . . . , p3}

in such a way that 〈ι〉 is the stabiliser in G of {1} and α = (1, 2, . . . , p3). Let

Q ∼= P p
3

be the base group of H . For i ∈ {1, . . . , p3} let Pi = {f : f ∈

Q, f(j) = 1 whenever j 6= i}. Each element x in Q may be written as a p3-tuple

x = (x1, . . . , xp3) where each xi is in P and xγ = (x1γ−1 , . . . , x(p3)γ−1 ) whenever

γ ∈ G. If γ ∈ G, and y = (y1, . . . , yp3) ∈ Q, then xyγ = (z1, . . . , zp3), where

zi = x
y

iγ−1

iγ
−1 . Thus CQ(yγ) is isomorphic with C × D, where C is the direct

product of the groups CPk
(yk), k running over the set of fixed points of γ, and

D is a direct product of ` copies of P , where ` is the number of orbits of 〈γ〉 of

length greater than 1. As no element of G \ {1} has more than p2 fixed points,

we find that, if γ ∈ G\{1}, then |CQ(yγ)| ≤ |P |2p
2−p, so CH(yγ) ≤ p5|P |2p

2−p.

Since p5+m(2p2−p) < pm(p3−1) for any natural number m, no element outside

of Q can possibly be contained in an Aut(H)-conjugate of P1. Accordingly,

QcharH .

We now embark on a description of the Sylow p-subgroups of Aut(H). First

of all, we utilise Remark 1d) to obtain Aut(H) = Inn(H)NAut(H)(〈α〉). If 〈ι′〉

is a subgroup of H of order p2 with αι
′

= αp+1, then ι′ ∈ NH(〈α〉) = GCQ(α)

and, up to conjugation in G, we have ι′ = ιc, c ∈ CQ(α). Equivalently, c =

(y, . . . , y) for some y ∈ P . We have worked out that CQ(ιc) ∼= CP (y)p ×P 2p−2.

Accordingly, ι′ is not an Aut(H)-conjugate of ι unless y ∈ Z(P ) or, equivalently,

c ∈ Z(Q). Let CZ(Q)(α) = 〈z〉 = Z(H); then there is an automorphism ζ of H

with ιζ = ιz, ζ |〈α,Q〉 = id. Now z ∈ Φ(Q) ≤ Φ(H).
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Recall that the unique p-Sylow-subgroup of Aut(G) is equal to 〈Inn(G), ϑ〉

where αϑ = αιp and ιϑ = ι. We might as well suppose ϑ ∈ NSp3 (G), setting

1γϑ = 1γ
ϑ

, γ ∈ G.

Now Remark 1b) shows how to find ϑ̃ in NAut(H)(G) with γϑ̃ = γϑ, γ ∈ G.

We identify ϑ̃ and ϑ. Please note that [ϑ, ζ] = id and that [P1, ϑ] = 1 whence

[Q, ϑ] ∈ [Q, G] ≤ Φ(H), while we know that [G, ϑ] = Φ(G).

Next, let τ be any p-element of Aut(H), τ /∈ Inn(H). We have seen that we

may presume σζ̃ ∈ NAut(H)(G) for some power ζ̃ of ζ, whence there are η ∈ G

and ϑ̃ ∈ 〈ϑ〉 such that γτ ζ̃ = γηϑ̃, whenever γ ∈ G.

Let Ω = {P1Z(Q), . . . , Pp3Z(Q)}. According to Remark 1c), τ ζ̃ϑ̃−1η−1 acts

on Ω, and must induce some element of CSΩ(G). An abelian regular subgroup

of SΩ being its own centraliser in SΩ, η may be multiplied by some element of

Z(G) = 〈αp
2

〉 such as to ensure that ψ = τ ζ̃ϑ̃−1η−1 simultaneously centralises

G and is trivial on Ω.

Let CCAut(H)(G)(Q/Z(Q)) = V ; then Z(P1) = Z(Q) ∩ P ′
1 is normalised by

V , whence [V, Z(Q)] = 1, since |Z(P )| = p by assumption. Accordingly,

[H, V, V ] = 1, and V is isomorphic to Hom(P/Φ(P ), CZ(Q)(ι)), and, in particu-

lar, is elementary abelian. It is obvious that [V, H ] ≤ Φ(H) and that [V, ζ] = 1.

Back to dissecting τ : Let Z(P1) = 〈z1〉 and let Y = 〈zα
i

1 | 0 < i ≤ p3 − 1〉;

then Y is a complement to 〈z1〉 in Z(Q) stabilised by ι. Let {q1, . . . , qk} be a

minimal set of generators of P1 and let qψi = q′iyi, q
′
i ∈ P1, yi ∈ Y . The map

qi 7→ qiyi, 1 ≤ i ≤ k, is contained in Aut(P1Z(Q)). For 1 ≤ i ≤ k, we have

yi ∈ CY (ι), for ψ normalises CQ(ι); accordingly, there is ϕ ∈ V with qϕi = qiyi,

1 ≤ i ≤ k, and ψϕ−1 both centralises G and normalises P1, thus is trivial on

Ω. There is ρ ∈ Aut(P1) such that (x1, . . . , xp3)
ψϕ−1

= (xρ1, . . . , x
ρ

p3
) whenever

(x1, . . . , xp3) ∈ Q. Certainly CAut(P1)o〈α〉(α) ∼= Aut(P1), in other words, every

element ρ of Aut(P1) gives rise to an element of CAut(H)(G) in this way. As

〈ϑ, ζ, V 〉 ≤ CAut(H)(H/Φ(H)) ≤ Op(Aut(H)), τ is a p-element if and only if ρ

is. Accordingly, [P, ρ] ≤ Φ(P ), so [H, τ ] ≤ Φ(H).

Now for the complement: Let Op(Aut(P )) = Inn(P )U , exp(U) = p,

U ∩ Inn(P ) = 1. Let Ũ be the group of “diagonal” automorphisms

(x1, . . . , xp3) 7→ (xρ1, . . . , x
ρ

p3
), ρ ∈ U , of Q. As a part of (5), we are assum-

ing [U, P ] ≤ Φ(P ), so [Ũ , Q] ≤ Φ(Q). Now [Φ(Q), V ] = 1 = [Z(Q), Ũ ], whence

[Q, Ũ , V ] = [Q, V, Ũ ] = 1. Thus [Ũ , V ] = 1 by the Three-Subgroup-Lemma.
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On Ω, 〈ι〉 has p orbits of length one, and p−1 orbits of lengths p and p2, respec-

tively; thus ϑ stabilises each orbit of 〈ι〉, hence [CZ(Q)(ι), ϑ] = 1 — Z(Q), after

all, being the permutation module associated with the action of 〈G, ϑ〉 on Ω.

Accordingly, [P1, V Ũ , ϑ] = 1 = [P1, ϑ, V Ũ ]. Certainly, [V, ϑ] ∈ CAut(H)(α), so

[V Ũ , ϑ] = 1.

If v ∈ NV (P1), then v normalises each Pi and is the product of an inner

automorphism induced by some element of CZ2(Q)(G) and some element of Ũ .

Let W be a complement in V to NV (P1) and set T = WŨ〈ϑ, ζ〉. We have seen

that 〈W, ϑ, ζ〉 ≤ Z(T ), in particular, exp(T ) = p. As ϑ /∈ Inn(G), T ∩ Inn(H)

is trivial on H/Q, and thus is contained in WŨ〈ζ〉. Furthermore, NH(G) =

CQ(G)G, G is faithful on Ω, while WŨ is trivial on Ω and NW (P1) = 1 :

An inner automorphism contained in WŨ would have to be contained in Ũ

and be induced by some element of CQ(G). As CQ(α) = CQ(G), no inner

automorphism of H acts on G like ζ does. Thus T ∩ Inn(H) = 1.

Let c ∈ CZ(Q)(〈ι, α
p〉), and let dj = [c, jα], j ∈ {0, . . . , p3}. For every j,

dj ∈ CZ(Q)(α
p), while [dj+1, ι] = [dj , ι, α]−α[α−1, ι−1, dj ]

−ια = [dj , ι, α]−α.

Via induction on j we thus obtain [dj , ι] = 1 for every j. Let y1 = [z1, p2−1α
p],

y2 = [y1, p2−1ι], y = [y2, p−2α], z = [y2, p−1α]. Then 〈z〉 = Z(H), [y, α] = z,

and, as we have just seen, [y, ι] = 1. We are going to use the terms y1, y2, y, z

throughout the remainder of this proof.

Let H / K with K a finite p-group, and C = CK(H). We have seen that

K = HCS with exp(S/S ∩C) = p, and that CS(G) is trivial on Ω and of index

at most p2 in S. Furthermore, SC ∩ H = 〈z〉. Again, we would like to find

σ ∈ Aut(K) that does not stabilise H .

a) First assume that C 6≤ H ; then there is x ∈ C with 〈[x, K], xp〉 ∈ 〈z〉. Let

xp = zk, 0 ≤ k ≤ p− 1. Let ασ1 = αx, ισ1 = ιy−k. Since [αx, ιy−k] = αpzk =

(αx)p, σ1 multiplicatively extends to an isomorphism (Remark 1a)). Next, let

σ1 |Q = id and apply Remark 1a) to turn σ1 into an automorphism of H— one

just needs to point to the fact that [Q, 〈x, y〉] = 1.

If u ∈ SC, there is ` = `u ∈ {0, . . . , p− 1}, with [x, u] = z`u; let uσ2 = uy`u.

Then (SC)σ2 ∼= SC, while both σ1 and σ2 centralise H ∩ SC = 〈z〉. If u ∈

SC, and g ∈ 〈Q, ι〉, then clearly [uσ2 , g] = [u, g]; furthermore, [uy`u, αx] =

[u, x][u, α][y`u , α] = [u, α]. If u ∈ SC and h ∈ H , then [uσ1 , hσ2 ] = [u, h],

and, as [u, h] ∈ 〈ιp, αp
2

Q〉 ≤ CH(σ1), we have [uσ2 , hσ1 ] = [u, h]σ1 . We may

combine σ1 and σ2 into an element of Aut(K), once again using Remark 1a).
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b) We are now entitled to assume that C = 〈z〉 and K = HS, with 〈f1(S),

S ∩H〉 ≤ 〈z〉. Supposing that CS(G) 6= 1 we find some element s such that 1 6=

s ∈ CS(G)∩Z(S/〈z〉). Let ` ∈ {0, . . . , p− 1} with sp = z`, and let (αi)(ιj)σ1 =

(αs)i(ιy−`)j , i, j ∈ Z. Since [αs, ιy−`] = αp[α, y−`] = αpz` = (αs)p, Remark

1a) becomes available and σ1 is an isomorphism. For h = (x1, . . . , xp3) ∈ Q,

let hσ1 = (x′1, . . . , x
′
p3) where x′i = (xi)

s(i−1)

, 1 ≤ i ≤ p3. Recalling that

P si ≤ PiZ(Q), for all i one readily sees that σ1 |Q ∈ Aut(Q). Furthermore,

(x′1, . . . , x
′
p3)

αx = ((xp3 )
sp3

−1

, x1, x
s
2, . . . , (xp3−1)

sp3
−2

)s = (x′p3 , x
′
1, . . . , x

′
p3−1);

in other words, (hα
i

)σ1 = h(αs)i

, h ∈ P1, i ∈ {0, . . . , p3 − 1}. The action

of ιy−` on Q being completely determined by the facts that it centralises

P1 and raises αx to its (p + 1)th power, the equation (x′1, . . . , x
′
p3)

ιy−`

=

(x′1, x
′
2ι−1 , . . . , x′(p3)ι−1 ) immediately follows. Again, (1) is satisfied, and σ1

and σ2 combine to σ ∈ Aut(〈H〉).

We know that S = CS(G)〈s, t〉, where 〈s, t〉〈z〉/〈z〉 induces a subgroup of

〈ϑ, ζ〉 on H . Since [z1, ϑ] = 1 = [αp, ϑ], we have [y1, ϑ] = 1 = [[y1, p2−1ι], ϑ] =

[y2, ϑ]. Now y = [y2, p−2α], and we have seen that [ι, y2] = 1; accordingly

yϑ = [y2, p−2(αι
p)] = y. Note that [Q, ζ] = 1 and every element of CS(G) acts

on Z(P1Z(Q)) ∩ Φ(P1Z(Q)) = 〈z1〉 and thus must be trivial on Z(Q) anyway.

If u ∈ S, then there is `u ∈ {0, . . . , p − 1} such that [s, u] = z`u ; let uσ2 =

uy`u , u ∈ S. Then [αs, uσ2 ] = [α, u][s, u][α, y`u ] = [α, u], thus [γ, uσ2 ] =

[γ, u] = [γ, u]σ1 whenever γ ∈ G- recall that [G, S] ≤ 〈ιp, αp
2

〉 ≤ CH(σ1).

Let q ∈ Pj for some j ∈ {1, . . . , p3}. From [s, u], [u, σ2] ∈ Z(Q), while [q, u] ∈

PjZ(Q) and [Z(Q), s] = 1 we derive that (qσ1)u
σ2

= (qs
j−1

)u = qus
j−1

= (qu)σ1 .

Conjugation is a homomorphism, so (qσ1 )u
σ2

= (qu)σ1 whenever q ∈ Q, while,

finally, for q ∈ Q, γ ∈ G, ((qγ)σ1)u
σ2

= ((qσ1)u
σ2

(γ)σ1)u
σ2

= (qu)σ1 (γu)σ1 =

(qγ)σ1 . Since S∩H ≤ 〈z〉, Remark 1a) says that the map hu 7→ hσ1uσ2 , h ∈ H ,

u ∈ U, is contained in Aut(K).

We have shown that H is not characteristic in K unless CS(G) = 1, which

implies |S| ≤ p2.

Suppose that K = 〈H, s, t〉, where s induces some element of ζWŨ on H

and t induces some element of ϑWŨ . Let tp = z`, and [t, s] = z`s -naturally,

0 ≤ `, `s ≤ p − 1. As in the final two paragraphs of the proof of Lemma 2,

we may apply (∗) and infer that for p > 3, (αt)p = αptp = [αt, ιy−`] while if

p = 3, then (αt)3 = α3t3 · α9 = [αt, ι4y−`]. We define σ1 accordingly, setting

ασ1 7→ αt, ισ1 = ιy−`, if p > 3, ισ1 = ι4y−` for p = 3. Applying Remark 1b),
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we see that σ1 gives rise to an isomorphism. Extend σ1 to 〈G, s, t〉 via t 7→ t,

s 7→ sy`s . If p = 3, then (ι4)3 = ι3, so ασ1t = (αt)t = αt(ιp) = ασ1 (ιpσ1), while

[αt, sy`s ] = [α, y`s ][t, s] = 1. Clearly, [ισ1 , t] = 1, while [ισ1 , sσ1 ] = [ι, s] = z.

Applying Remark 1a) to the semidirect product G〈s, t〉, we see that σ1 becomes

an isomorphism once we have extended it by demanding multiplicativeness.

The automorphism induced by t is a product ϑϕ, ϕ ∈WŨ . Regard 〈α, ϑ〉 as

a subgroup of Sp3 . Using (∗) like in the proof of Lemma 2, we find that αϑ = β

is another p3-cycle, hence there is ξ ∈ Sp3 with αξ = β. There σ2 ∈ Aut(Q)

given by (x1, . . . , xp3) 7→ (x′1, . . . , x
′
p3), with x′i = xϕ

(i−1)

iξ
, 1 ≤ i ≤ p3. Then

(x′1, . . . , x
′
p3)

αt = (x′p3 , x
′
1, . . . , x

′
p3−1). The action of the group 〈t, ισ1 〉 on Q is

fully determined by its centralising P1 and its action on 〈α〉. This implies that

σ1, σ2, 〈G, t〉 (taking the role of S) and Q (in the role of Q) satisfy (1). Thus

σ1 and σ2 combine to an isomorphism σ of 〈H, t〉; as [Q, s] = 1, and σ1 is an

isomorphism, setting sσ = s has σ extended into an element of Aut(K).

Finally, let K = 〈H, s〉, where the automorphism induced by s on H is in

ζiϑjWQ̃, 0 < i ≤ p− 1. We define σ2 just as before, letting β = αϑj , αξ = β.

Let sp = z`. The isomorphism σ1 is defined via α 7→ αs, s 7→ s, ι 7→ ιyi−`, if

p > 3, ι 7→ ι4y`−i, p = 3. If p > 3, then [αs, ιyi−`] = [sα, ιyi−`] = αpziz`−i =

αpsp = (αs)p, while for p = 3 we get [αs, ι4yi−`] = [sα, ι4yi−`] = α12z` = (αt)3.

Thus σ1 yields an isomorphism; Remark 1a) again delivers.

Lemma 6: Let P be a nonabelian finite 2-group such that

(6)
|Z(P )| = 2, every 2-automorphism of P is trivial on P/Φ(P ) and there is

an elementary abelian complement U to Inn(P ) in

a Sylow-2-subgroup of Aut(P ).

Let H be the wreath product H = P oD, 〈α, ι〉 = D ∼= D8, o(α) = 4, o(ι) = 2,

αι = α−1 with respect to the action of D on the right cosets of 〈ι〉 in D. Then

H inherits each of the properties listed in (6), while there is no finite 2-group

K properly containing H as a characteristic subgroup.

Proof. First of all, |Z(H)| = 2, and Z(Q) is the permutation module over

GF (2) with respect to the prescribed embedding D → S4. Let Q ∼= P 4 be

the base group of H , and write the elements of Q as quadruples (x1, . . . , x4),

x1, . . . , x4 ∈ P , with (x1, . . . , x4)
δ = (x1δ−1 , . . . , x4δ−1 ), δ ∈ D. For 1 ≤ i ≤ 4,

let Pi be the group of quadruples of elements of P with all entries equal to
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1 apart from possibly the ith one. If g ∈ P and q = (g, 1, 1, 1) ∈ P1, then

CQ(q) ∼= CP (g) × P 3, while CH(q) = CQ(q)〈ι〉. For x ∈ H \Q, |CQ(x)| ≤ |P |3,

and |CQ(x)| = |P |3 if and only if x = δy, where δ is a noncentral involution in

D and y ∈ Z(Q). Accordingly, CH(x) ≤ 〈α2, x〉CQ(x), and x and q cannot be

Aut(H)-conjugates. Thus QcharH .

With regards to methods as well as to results, the analysis of 2-automorphisms

of H proceeds much as its counterpart in Lemma 5, thus is presented more

succinctly. As before, Remark 1d) yields Aut(H) = Inn(H)NAut(H)(〈α〉). In

the present circumstances, this means Aut(H) = Inn(H)CAut(H)(α). If ϕ ∈

CAut(H)(α), then [ϕ, ι] ∈ NQ(〈α〉) = CQ(〈α, ι〉); taken together with |CQ(ιϕ)| =

|CQ(ι)| this implies [ι, ϕ] ∈ Z(H). Let Z(H) = 〈z〉. There is ζ ∈ Aut(H)

defined by ιζ = ιz, ζ |〈α,Q〉 = id; we know at this point that Aut(H) =

Inn(H)CAut(H)(D)〈ζ〉. Note that ζ ∈ Z(Aut(H)) and [ζ, H ] ≤ Φ(H).

According to Remark 1c), Aut(H) acts on the set Ω = {PiZ(Q) : 1 ≤ i ≤ 4},

and if ψ ∈ CAut(H)(G), then we may take ψ to be trivial on Ω, we could multiply

by the inner automorphism induced by α2 otherwise. Let

V = CCAut(H)(D)(Q/Z(Q));

as Z(P1) = Z(P1Z(Q)) ∩ (P1Z(Q))′ [V, Z(Q)] = 1, whence V is elementary

abelian and isomorphic to Hom(P/Φ(P ), CZ(Q)(ι)). Observe that [V, ζ] = 1

and [V, H ] ≤ Φ(H).

Let Z(Pi) = 〈zi〉, 1 ≤ i ≤ 4, and let Y = 〈z2, z3, z4〉. If ψ ∈ CAut(H)(G)

and ψ is trivial on Ω, then [ψ, P1] ≤ P1CY (ι), there is v ∈ V such

that ψvNCAut(H)(G)(P1). As 〈V, ζ〉 ≤ O2(Aut(H)), each 2-automorphism of

H is a product ϕη, where η ∈ 〈Inn(H), ζ, V 〉 and ϕ is a 2-element of N :=

NCAut(H)(G)(P1). If ρ ∈ U , then let ρ̃ be the automorphism of Q defined by

(x1, x2, x3, x4) 7→ (xρ1, . . . , x
ρ
4); the map ρ 7→ ρ̃, ρ ∈ Aut(P1), is an isomorphism;

as CN (P1) = 1, N = {ρ̃ : ρ ∈ Aut(P )}. Let Ũ = {ρ̃ : ρ ∈ U}. Then [Ũ , Z(Q)] =

1 = [V, Φ(Q)], condition (6) says [Ũ , H ] ∈ Φ(H), so 1 = [Q, V, Ũ ][Q, Ũ , V ] so

[Ũ , V ] = 1.

Through replacing V by a complement W of NV (P1) in V , we thus obtain an

elementary abelian supplement L = WŨ〈ζ〉 of Inn(H) in a Sylow 2-subgroup

of Aut(H). Let ψ ∈ L ∩ Inn(H) be conjugation by the element h. Then

CH(α) ∩ NH(〈ι, z〉) = 〈α2, CQ(α)〉, so [ψ, ι] = 1 and ψ ∈ WŨ . This in turn

implies h ∈ CQ(α), so ψ ∈ Ũ ; all in all, L ∩ Inn(H) ∼= U ∩ Inn(P ) = 1.
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Now let H /K be a finite 2-group and let C = CK(H). If C 6≤ H , then there

is x ∈ C such that 〈x2〉[x, K] ≤ Z(H). We know that K = HM , where C ⊆M

and M/C induces a subgroup of L on H . If m ∈ M , then there is `x ∈ {0, 1}

such that [x, m] = z`m . Let 〈z1〉 = Z(P1) and let y = z1z
α2

1 , Then [y, α] = z,

while [η, 〈ι α2, Q〉] = 1 = [y, L]. Define σ1 via α 7→ αx, ι 7→ ιyk, where x2 = zk,

k ∈ {0, 1}, and σ1 |Q = id. Since [αy, ιyk] = α2zk, imposing multiplicativeness

makes σ1 an isomorphism. Let σ2 |M be defined via m 7→ my`x , m ∈ M .

As [y, M ] = 1, σ2 is an isomorphism and from what we have learned about

L ∩ Inn(H) in particular, that it consists of inner automorphisms induced by

elements of CQ(D) — we know that σ1 and σ2 are trivial on H ∩M as well as

[H, M ]. Thus Remark 1a) yields that σ : K → K, defined via (xh)σ = xσ1hσ2 ,

h ∈ H , x ∈M , is in Aut(H).

We may now assume that K = HM , with Φ(M)(H ∩M) ≤ 〈z〉. If there

is s ∈ M with s inducing some element of ŨW on H , then we define σ1 via

α 7→ αs, ι 7→ ιyk with s2 = zk. Now [αs, ιyk] = α2zk = (αs)2, so σ1 gives

rise to an isomorphism. We extend σ1 via (x1, x2, x3, x4) 7→ (x1, x
s
2, x3, x

s
4),

(x1, x2, x3, x4) ∈ Q; as (x1, x
s
2, x3, x

s
4)
αs = (xs4, x1, x

s
2, x3)

s = (x4, x
s
1, x2, x

s
3),

Remark 1a) says σ1 is an isomorphism. If m ∈ M, then there is `m ∈ {0, 1}

such that [s, m] = z`m and we let mσ
2 = my`m , m ∈ M . Again, σ2 |H is an

isomorphism, while, for m ∈ M , [αs, my`m ] = [s, m][α, y`m ] = 1 = [α, m] and

[ι, my`m ] = [ι, m]; if i ∈ {1, 2, 3, 4} and q ∈ Qi, then [qs
i−1

, my`m ] = qms
i−1

.

As [H, M ] ≤ Φ(Q) ≤ CQ(σ1), Remark 1a) again comes into play and proves σ

to be contained in Aut(K).

The only possibility left for us to consider is K = H〈s〉, where s induces

ζρ̃v on H , where ρ ∈ U , v ∈ V . On 〈α, Q, s〉 define σ exactly as before

(in particular, sσ = s). Let s2 = zk, k ∈ {0, 1} and let ισ = ιyk+1. Since

[αs, ιyk+1] = α2zk+1z = α2zk, Remark 1a) may be brought forward once more

to show σ ∈ Aut(K).

Proof of the Theorem. As is well-known (see [4], 15.3) the Sylow-p-subgroups

of Spn are isomorphic with the n-fold wreath product Z/pZ o . . . o Z/pZ. If p is

odd, let G be the group from Lemma 2. Using this lemma and letting Lemma

5 provide the inductive step, we obtain that, for n ∈ N, the n-fold wreathed

product Gn = G o . . . o G, (n times) with G embedded into Sp3 as in 3, is not

characteristic in any finite p-group properly containing it. If Gn contains a

subgroup isomorphic to the n-fold wreath product Z/pZ o . . . o Z/pZ, then, as



112 BETTINA WILKENS Isr. J. Math.

P oG has a subgroup isomorphic to the regular wreath product P o 〈αp
2

〉, P oG

contains an isomorphic copy of a Sylow-p-subgroup of Spn+1 .

Now for p = 2 : In the semidihedral group P = 〈η, δ|η8 = 1 = δ2, ηδ = η3〉 ∼=

SD16, we have Φ(P ) = 〈η2〉, ηΦ(P ) is comprised entirely of elements of order

8, ηδΦ(P ) consists of elements of order 4, while every element of δΦ(P ) is an

involution. Thus Aut(P ) is trivial on P/Φ(P ), and, moreover, acts on 〈δ〉P .

Thus if ζ ∈ Aut(P ) \ Inn(P ), ζ may be taken to centralise δ and normalise 〈η〉.

Multiplying by δ, if necessary, we find ηζ = η5, δζ = δ. Accordingly, the group

SD16 is fit to play the role of P in Lemma 6; this lemma then inductively yields

that the n-fold wreath products SD16oD8o. . .oD8 (with respect to the embedding

D8 → S4) are never characteristic in finite 2-groups properly containing them.

Arguing as for odd p, we see that an n-fold wreathed product of this kind has

a subgroup isomorphic with the n-fold wreath product Z/2Z o . . . o Z/2Z. This

proves the theorem.
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